MAXIAV
 75 $\Omega / 100 \Omega / 120 \Omega$ Switchable Termination Networks

Abstract

General Description The MAX3406／MAX3407／MAX3408 are general－purpose line－terminating networks designed to change the termi－ nation value of a line，depending on the state of a digi－ tal control line，allowing the connection to a coaxial cable or a twisted pair wire．These devices are switch－ able between $75 \Omega, 100 \Omega$ ，and 120Ω ．The MAX3406 can switch from 75Ω to 100Ω ，the MAX3407 can switch from 75Ω to 120Ω ，and the MAX3408 can switch from 100Ω to 120Ω termination．Termination resistance val－ ues are guaranteed to $\pm 2.5 \%$ through $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and for signal levels of $\pm 3.6 \mathrm{~V}$

The MAX3406／MAX3407／MAX3408 consume only 50 4 A supply current and are fully specified for operation from $\mathrm{a}+4.5 \mathrm{~V}$ to +5.5 V power supply．These devices are avail－ able in a tiny 5 －pin SOT23 package．All specifications are guaranteed over the extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

Applications
Telecom E1／T1／J1 Coax／Twisted Pair Termination Data Routers

Telecom Racks
Video Security
Industrial Networks
Ethernet Networks

Features
－Available in 5－Pin SOT Package
－$\pm 2.5 \%$ Resistance Accuracy Over Extended Temperature Range
－-3.6 V to＋3．6V Input Voltage Range
－50 AA Supply Current（max）
－Bipolar Input Range Off a Single Supply
－Switchable Termination
75Ω or 100Ω（MAX3406）
75Ω or 120Ω（MAX3407）
100Ω or 120Ω（MAX3408）
\qquad Ordering Information

PART	TEMP． RANGE	PIN－ PACKAGE	TOP MARK
MAX3406EUK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23－5	ADSV
MAX3407EUK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23－5	ADSW
MAX3408EUK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23－5	ADSX

PART	TERMINATION	
	ENABLE $=\mathbf{1}$	ENABLE $=\mathbf{0}$
MAX3406EUK	75Ω	100Ω
MAX3407EUK	75Ω	120Ω
MAX3408EUK	100Ω	120Ω

75 //100 /120 Switchable Termination Networks
 ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unless otherwise noted.)

A, B (applied individually)	
Differential Voltage Across A-B	
Continuous Power Dissipation (T	
5-Pin SOT23 (derate $7.1 \mathrm{~mW} /$	

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Note 1: All parameters tested at $+25^{\circ} \mathrm{C}$. Limits through temperature are guaranteed by design.

75 $\Omega / 100 \Omega / 120 \Omega$ Switchable Termination Networks

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

75 //100 /120 Switchable Termination Networks

$\overline{\left(V_{C C}=+5 \mathrm{~V}, T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted.) }\right.}$ Typical Operating Characteristics (continued)

Pin Description

PIN	NAME	FUNCTION
1	VCC	Supply Voltage +4.5 V to +5.5 V . Bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
2	GND	Ground
3	ENABLE	Digital Control Input. Drive ENABLE high to turn on the internal switch, pull ENABLE low to disable the internal switch.
4	B	Cable Terminator Terminal B
5	A	Cable Terminator Terminal A

Detailed Description

The MAX3406/MAX3407/MAX3408 are line-terminating networks. They provide $75 \Omega, 100 \Omega$, and 120Ω termination to be compatible with twisted pair or coaxial cable. The MAX3406/MAX3407/MAX3408 consume only 50 1 A supply current and operate from a +4.5 V to +5.5 V power supply. They are available in a space-saving 5pin SOT23 package. All specifications are guaranteed over the extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
The ENABLE pin allows switching from one termination value to another: 75Ω to 100Ω for the MAX3406, 75Ω to 120Ω for the MAX3407, and 100Ω to 120Ω for the MAX3408 (Figure 1 and Table 1).

Applications Information

In order for the MAX3406/MAX3407/MAX3408 to terminate transmission lines correctly, they should look like a precision resistance. These devices look this way under all operating conditions as can be seen from the Typical Operating Characteristics. The very small variations in resistance with temperature, input voltage, and frequency should not be of any concern in most applications, though the users should be aware of them. The next three sections describe these variations and explain what end application effect they could have.
The function of a termination is to minimize line reflections by terminating a transmission line in its characteristic impedance. The reflection coefficient for a line of Z0 characteristic impedance terminated with a given ZL is:
Voltage Reflection Coefficient = (ZL - ZO)/(ZL + Z0)

75 $/ 100 \Omega / 120 \Omega$ Switchable Termination Networks

Table 1. Termination Mode Selection

PART	$\mathbf{R A B ~}_{\mathbf{A B}} \mathbf{\Omega}$ ENABLE $=\mathbf{1}$	$\mathbf{R A B ~}_{\mathbf{A B}}(\boldsymbol{)}$ ENABLE $=\mathbf{0}$
MAX3406EUK	75	100
MAX3407EUK	75	120
MAX3408EUK	100	120

Figure 1. Simplified Block Diagram

This is the voltage that would be reflected from any line termination. As ZL becomes equal to Z0, this quantity becomes zero. Often this is expressed in dB and is called return loss. Reflection coefficient values less than 0.1 corresponding to a return loss of -20 dB are generally seen as adequate. The MAX3406/MAX3407/ MAX3408 will typically provide reflection coefficients below 0.01 or -40 dB return loss.
In most cases, ZO and ZL are considered real resistive quantities and the result is a dimensionless scalar quantity, but the equation is valid in the complex case as well.

Resistance vs. Temperature The MAX3406/MAX3407/MAX3408 resistance is constant over temperature. The typical temperature coefficient of resistance is $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range centered at $+25^{\circ} \mathrm{C}$, this would be a $\pm 1 \%$ change in resistance. The initial accuracy at room temperature is $\pm 1.5 \%$. This provides improved perfor-
mance over discrete 5\% resistors with a 100ppm tempco, which are typically used for termination, $\pm 5.6 \%$ worst case. The reflections from such a mistermination are minimal and correspond to a worst-case reflection coefficient for the MAX3406/MAX3407/MAX3408 of ± 0.015 or a -36dB return loss.

Resistance vs. Input Voltage Range The MAX3406/MAX3407/MAX3408 accept input voltages (V_{AB}) from -3.6 V to +3.6 V . There is virtually no resistance variation over this range (0.02% typically). The initial accuracy specifications in the data sheet already account for resistance variations of the signal voltage range.

Impedance vs. Frequency As seen in the Typical Operating Characteristics, there is a slight impedance variation in the MAX3406/ MAX3407/MAX3408 with frequency. The reactive components are parasitic inductance and capacitance associated with packaging, lead frame, and bond wires. These impedance components are very small up to frequencies above 20 MHz . These parasitics are also similar to those that would be present with a discrete resistor terminator, and they can generally be ignored. These effects should be evaluated for applications with significant frequency content above 20 MHz . This applies to sine wave sources above 20 MHz and square and video sources above 8 MHz . For all intended applications, E1/T1, Standard Video, etc. they can be ignored.

Decoupling Vcc
The VCC pin for the MAX3406/MAX3407/MAX3408 must be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to GND placed as close to the device as possible. This is required for proper operation of the part.

Chip Information

TRANSISTOR COUNT: 102
PROCESS: BiCMOS

75 /100 /120 Switchable Termination Networks

\qquad

